Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Infect Control Hosp Epidemiol ; : 1-10, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2318560

ABSTRACT

OBJECTIVE: To examine temporal changes in coverage with a complete primary series of coronavirus disease 2019 (COVID-19) vaccination and staffing shortages among healthcare personnel (HCP) working in nursing homes in the United States before, during, and after the implementation of jurisdiction-based COVID-19 vaccination mandates for HCP. SAMPLE AND SETTING: HCP in nursing homes from 15 US jurisdictions. DESIGN: We analyzed weekly COVID-19 vaccination data reported to the Centers for Disease Control and Prevention's National Healthcare Safety Network from June 7, 2021, through January 2, 2022. We assessed 3 periods (preintervention, intervention, and postintervention) based on the announcement of vaccination mandates for HCP in 15 jurisdictions. We used interrupted time-series models to estimate the weekly percentage change in vaccination with complete primary series and the odds of reporting a staffing shortage for each period. RESULTS: Complete primary series vaccination among HCP increased from 66.7% at baseline to 94.3% at the end of the study period and increased at the fastest rate during the intervention period for 12 of 15 jurisdictions. The odds of reporting a staffing shortage were lowest after the intervention. CONCLUSIONS: These findings demonstrate that COVID-19 vaccination mandates may be an effective strategy for improving HCP vaccination coverage in nursing homes without exacerbating staffing shortages. These data suggest that mandates can be considered to improve COVID-19 coverage among HCP in nursing homes to protect both HCP and vulnerable nursing home residents.

2.
MMWR Morb Mortal Wkly Rep ; 72(4): 95-99, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2217721

ABSTRACT

Nursing home residents have been disproportionately affected by COVID-19; older age, comorbidities, and the congregate nature of nursing homes place residents at higher risk for infection and severe COVID-19-associated outcomes, including death (1). Studies have demonstrated that receipt of a primary COVID-19 mRNA vaccination series (2) and monovalent booster doses (3) is effective in reducing COVID-19-related morbidity and mortality in this population. Public health recommendations for staying up to date with COVID-19 vaccination have been revised throughout the pandemic response, most recently to include an updated (bivalent) booster dose, which protects against both the ancestral strain of SARS-CoV-2 and recent Omicron variants BA.4 and BA.5 (4). However, data on the effectiveness of staying up to date, including with bivalent booster doses, are lacking among nursing home residents. CDC's National Healthcare Safety Network (NHSN) analyzed surveillance data to examine weekly incidence rates of COVID-19 among nursing home residents by up-to-date vaccination status (receipt of a bivalent booster dose or completion of a primary series or receipt of a monovalent booster dose within the previous 2 months [i.e., not yet eligible to receive a bivalent booster dose]).* Up-to-date vaccination status among nursing home residents remained low throughout the study period, increasing to 48.9% by the week ending January 8, 2023. During October 10, 2022-January 8, 2023, the COVID-19 weekly incidence rates (new cases per 1,000 nursing home residents) among residents who were not up to date with COVID-19 vaccination were consistently higher than those among residents who were up to date. Moreover, the weekly incidence rate ratios (IRRs) indicated that residents who were not up to date with COVID-19 vaccines had a higher risk for acquiring SARS-CoV-2 than their up-to-date counterparts (IRR range = 1.3-1.5). It is critical that nursing home residents stay up to date with COVID-19 vaccines and receive a bivalent booster dose to maximize protection against COVID-19.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , COVID-19 Vaccines , SARS-CoV-2 , Nursing Homes , Vaccination
3.
MMWR Morb Mortal Wkly Rep ; 71(18): 633-637, 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1836055

ABSTRACT

Nursing home residents have experienced disproportionally high levels of COVID-19-associated morbidity and mortality and were prioritized for early COVID-19 vaccination (1). Following reported declines in vaccine-induced immunity after primary series vaccination, defined as receipt of 2 primary doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or 1 primary dose of Ad26.COV2 (Johnson & Johnson [Janssen]) vaccine (2), CDC recommended that all persons aged ≥12 years receive a COVID-19 booster vaccine dose.* Moderately to severely immunocompromised persons, a group that includes many nursing home residents, are also recommended to receive an additional primary COVID-19 vaccine dose.† Data on vaccine effectiveness (VE) of an additional primary or booster dose against infection with SARS-CoV-2 (the virus that causes COVID-19) among nursing home residents are limited, especially against the highly transmissible B.1.1.529 and BA.2 (Omicron) variants. Weekly COVID-19 surveillance and vaccination coverage data among nursing home residents, reported by skilled nursing facilities (SNFs) to CDC's National Healthcare Safety Network (NHSN)§ during February 14-March 27, 2022, when the Omicron variant accounted for >99% of sequenced isolates, were analyzed to estimate relative VE against infection for any COVID-19 additional primary or booster dose compared with primary series vaccination. After adjusting for calendar week and variability across SNFs, relative VE of a COVID-19 additional primary or booster dose was 46.9% (95% CI = 44.8%-48.9%). These findings indicate that among nursing home residents, COVID-19 additional primary or booster doses provide greater protection against Omicron variant infection than does primary series vaccination alone. All immunocompromised nursing home residents should receive an additional primary dose, and all nursing home residents should receive a booster dose, when eligible, to protect against COVID-19. Efforts to keep nursing home residents up to date with vaccination should be implemented in conjunction with other COVID-19 prevention strategies, including testing and vaccination of nursing home staff members and visitors.


Subject(s)
COVID-19 , SARS-CoV-2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Nursing Homes , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
4.
Public Health Rep ; 137(2): 239-243, 2022.
Article in English | MEDLINE | ID: covidwho-1673687

ABSTRACT

Monitoring COVID-19 vaccination coverage among nursing home residents and staff is important to ensure high coverage rates and guide patient-safety policies. With the termination of the federal Pharmacy Partnership for Long-Term Care Program, another source of facility-based vaccination data is needed. We compared numbers of COVID-19 vaccinations administered to nursing home residents and staff reported by pharmacies participating in the temporary federal Pharmacy Partnership for Long-Term Care Program with the numbers of COVID-19 vaccinations reported by nursing homes participating in new COVID-19 vaccination modules of the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN). Pearson correlation coefficients comparing the number vaccinated between the 2 approaches were 0.89, 0.96, and 0.97 for residents and 0.74, 0.90, and 0.90 for staff, in the weeks ending January 3, 10, and 17, 2021, respectively. Based on subsequent NHSN reporting, vaccination coverage with ≥1 vaccine dose reached 73.7% for residents and 47.6% for staff the week ending January 31 and increased incrementally through July 2021. Continued monitoring of COVID-19 vaccination coverage is important as new nursing home residents are admitted, new staff are hired, and additional doses of vaccine are recommended.


Subject(s)
COVID-19/prevention & control , Long-Term Care , Nursing Homes , Vaccination Coverage/statistics & numerical data , Centers for Medicare and Medicaid Services, U.S. , Humans , Mandatory Reporting , Public Health Surveillance/methods , SARS-CoV-2 , United States
5.
J Public Health Res ; 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1506396

ABSTRACT

BACKGROUND: COVID-19 pandemic reached a public health emergency status of international concern. The impacts and events associated with this were associated with adverse psychological impacts among the general public globally. This study aimed to determine the prevalence of psychological distress and to identify predictors associated with psychological distress due to the COVID-19 pandemic among the population in Myanmar. DESIGN AND METHODS: A cross-sectional survey was conducted from March to April 2020 among adults, 18 years old and above, who reside in Myanmar through a structured questionnaire distributed in social media platforms. Univariate and Bivariate analyses were used to estimate the prevalence of COVID-19 Peritraumatic Distress Index (CPDI) symptoms and to test the associations between CPDI and the exposure variables. Logistic Regression Analysis was done to identify significant predictors of distress. RESULTS: There were 530 participants in this study.37.4% of them did not have psychological distress,55.6% experienced mild to moderate psychological distress, and 7% experienced severe psychological distress due to COVID-19 pandemic. Simple and Multiple Logistic Regression Analyses were performed to determine the factors associated with psychological distress due to COVID-19. CONCLUSIONS: It was shown that the self-employed group and age group older than 45 years old had more psychological distress than others. However, Buddhists and people from the capital city had less distress than other religions and districts. This study recommends the government to develop better strategies for self-employed groups, elders, and the poor for a support, relief, and resettlement of their ruined status.

6.
MMWR Morb Mortal Wkly Rep ; 70(34): 1163-1166, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374685

ABSTRACT

Nursing home and long-term care facility residents live in congregate settings and are often elderly and frail, putting them at high risk for infection with SARS-CoV-2, the virus that causes COVID-19, and severe COVID-19-associated outcomes; therefore, this population was prioritized for early vaccination in the United States (1). Following rapid distribution and administration of the mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) under an Emergency Use Authorization by the Food and Drug Administration (2), observational studies among nursing home residents demonstrated vaccine effectiveness (VE) ranging from 53% to 92% against SARS-CoV-2 infection (3-6). However, concerns about the potential for waning vaccine-induced immunity and the recent emergence of the highly transmissible SARS-CoV-2 B.1.617.2 (Delta) variant† highlight the need to continue to monitor VE (7). Weekly data reported by the Centers for Medicaid & Medicare (CMS)-certified skilled nursing facilities or nursing homes to CDC's National Healthcare Safety Network (NHSN)§ were analyzed to evaluate effectiveness of full vaccination (2 doses received ≥14 days earlier) with any of the two currently authorized mRNA COVID-19 vaccines during the period soon after vaccine introduction and before the Delta variant was circulating (pre-Delta [March 1-May 9, 2021]), and when the Delta variant predominated¶ (Delta [June 21-August 1, 2021]). Using 17,407 weekly reports from 3,862 facilities from the pre-Delta period, adjusted effectiveness against infection for any mRNA vaccine was 74.7% (95% confidence interval [CI] = 70.0%-78.8%). Analysis using 33,160 weekly reports from 11,581 facilities during an intermediate period (May 10-June 20) found that the adjusted effectiveness was 67.5% (95% CI = 60.1%-73.5%). Analysis using 85,593 weekly reports from 14,917 facilities during the Delta period found that the adjusted effectiveness was 53.1% (95% CI = 49.1%-56.7%). Effectiveness estimates were similar for Pfizer-BioNTech and Moderna vaccines. These findings indicate that mRNA vaccines provide protection against SARS-CoV-2 infection among nursing home residents; however, VE was lower after the Delta variant became the predominant circulating strain in the United States. This analysis assessed VE against any infection, without being able to distinguish between asymptomatic and symptomatic presentations. Additional evaluations are needed to understand protection against severe disease in nursing home residents over time. Because nursing home residents might remain at some risk for SARS-CoV-2 infection despite vaccination, multiple COVID-19 prevention strategies, including infection control, testing, and vaccination of nursing home staff members, residents, and visitors, are critical. An additional dose of COVID-19 vaccine might be considered for nursing home and long-term care facility residents to optimize a protective immune response.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nursing Homes , SARS-CoV-2/isolation & purification , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Humans , United States/epidemiology , Vaccines, Synthetic
7.
J Am Med Dir Assoc ; 22(10): 2009-2015, 2021 10.
Article in English | MEDLINE | ID: covidwho-1356280

ABSTRACT

OBJECTIVE: To evaluate if facility-level vaccination after an initial vaccination clinic was independently associated with COVID-19 incidence adjusted for other factors in January 2021 among nursing home residents. DESIGN: Ecological analysis of data from the CDC's National Healthcare Safety Network (NHSN) and from the CDC's Pharmacy Partnership for Long-Term Care Program. SETTING AND PARTICIPANTS: CMS-certified nursing homes participating in both NHSN and the Pharmacy Partnership for Long-Term Care Program. METHODS: A multivariable, random intercepts, negative binomial model was applied to contrast COVID-19 incidence rates among residents living in facilities with an initial vaccination clinic during the week ending January 3, 2021 (n = 2843), vs those living in facilities with no vaccination clinic reported up to and including the week ending January 10, 2021 (n = 3216). Model covariates included bed size, resident SARS-CoV-2 testing, staff with COVID-19, cumulative COVID-19 among residents, residents admitted with COVID-19, community county incidence, and county social vulnerability index (SVI). RESULTS: In December 2020 and January 2021, incidence of COVID-19 among nursing home residents declined to the lowest point since reporting began in May, diverged from the pattern in community cases, and began dropping before vaccination occurred. Comparing week 3 following an initial vaccination clinic vs week 2, the adjusted reduction in COVID-19 rate in vaccinated facilities was 27% greater than the reduction in facilities where vaccination clinics had not yet occurred (95% confidence interval: 14%-38%, P < .05). CONCLUSIONS AND IMPLICATIONS: Vaccination of residents contributed to the decline in COVID-19 incidence in nursing homes; however, other factors also contributed. The decline in COVID-19 was evident prior to widespread vaccination, highlighting the benefit of a multifaced approach to prevention including continued use of recommended screening, testing, and infection prevention practices as well as vaccination to keep residents in nursing homes safe.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Incidence , Nursing Homes , SARS-CoV-2 , United States/epidemiology , Vaccination
8.
Infect Control Hosp Epidemiol ; 43(10): 1473-1476, 2022 10.
Article in English | MEDLINE | ID: covidwho-1303723

ABSTRACT

During March 27-July 14, 2020, the Centers for Disease Control and Prevention's National Healthcare Safety Network extended its surveillance to hospital capacities responding to COVID-19 pandemic. The data showed wide variations across hospitals in case burden, bed occupancies, ventilator usage, and healthcare personnel and supply status. These data were used to inform emergency responses.


Subject(s)
COVID-19 , Humans , United States/epidemiology , Pandemics/prevention & control , Centers for Disease Control and Prevention, U.S. , Hospitals , Delivery of Health Care
9.
Infect Control Hosp Epidemiol ; 43(1): 32-39, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1114665

ABSTRACT

OBJECTIVE: The rapid spread of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) throughout key regions of the United States in early 2020 placed a premium on timely, national surveillance of hospital patient censuses. To meet that need, the Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN), the nation's largest hospital surveillance system, launched a module for collecting hospital coronavirus disease 2019 (COVID-19) data. We present time-series estimates of the critical hospital capacity indicators from April 1 to July 14, 2020. DESIGN: From March 27 to July 14, 2020, the NHSN collected daily data on hospital bed occupancy, number of hospitalized patients with COVID-19, and the availability and/or use of mechanical ventilators. Time series were constructed using multiple imputation and survey weighting to allow near-real-time daily national and state estimates to be computed. RESULTS: During the pandemic's April peak in the United States, among an estimated 431,000 total inpatients, 84,000 (19%) had COVID-19. Although the number of inpatients with COVID-19 decreased from April to July, the proportion of occupied inpatient beds increased steadily. COVID-19 hospitalizations increased from mid-June in the South and Southwest regions after stay-at-home restrictions were eased. The proportion of inpatients with COVID-19 on ventilators decreased from April to July. CONCLUSIONS: The NHSN hospital capacity estimates served as important, near-real-time indicators of the pandemic's magnitude, spread, and impact, providing quantitative guidance for the public health response. Use of the estimates detected the rise of hospitalizations in specific geographic regions in June after they declined from a peak in April. Patient outcomes appeared to improve from early April to mid-July.


Subject(s)
COVID-19 , Bed Occupancy , Hospitalization , Hospitals , Humans , SARS-CoV-2 , United States/epidemiology
10.
MMWR Morb Mortal Wkly Rep ; 70(2): 52-55, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1068077

ABSTRACT

During the beginning of the coronavirus disease 2019 (COVID-19) pandemic, nursing homes were identified as congregate settings at high risk for outbreaks of COVID-19 (1,2). Their residents also are at higher risk than the general population for morbidity and mortality associated with infection with SARS-CoV-2, the virus that causes COVID-19, in light of the association of severe outcomes with older age and certain underlying medical conditions (1,3). CDC's National Healthcare Safety Network (NHSN) launched nationwide, facility-level COVID-19 nursing home surveillance on April 26, 2020. A federal mandate issued by the Centers for Medicare & Medicaid Services (CMS), required nursing homes to commence enrollment and routine reporting of COVID-19 cases among residents and staff members by May 25, 2020. This report uses the NHSN nursing home COVID-19 data reported during May 25-November 22, 2020, to describe COVID-19 rates among nursing home residents and staff members and compares these with rates in surrounding communities by corresponding U.S. Department of Health and Human Services (HHS) region.* COVID-19 cases among nursing home residents increased during June and July 2020, reaching 11.5 cases per 1,000 resident-weeks (calculated as the total number of occupied beds on the day that weekly data were reported) (week of July 26). By mid-September, rates had declined to 6.3 per 1,000 resident-weeks (week of September 13) before increasing again, reaching 23.2 cases per 1,000 resident-weeks by late November (week of November 22). COVID-19 cases among nursing home staff members also increased during June and July (week of July 26 = 10.9 cases per 1,000 resident-weeks) before declining during August-September (week of September 13 = 6.3 per 1,000 resident-weeks); rates increased by late November (week of November 22 = 21.3 cases per 1,000 resident-weeks). Rates of COVID-19 in the surrounding communities followed similar trends. Increases in community rates might be associated with increases in nursing home COVID-19 incidence, and nursing home mitigation strategies need to include a comprehensive plan to monitor local SARS-CoV-2 transmission and minimize high-risk exposures within facilities.


Subject(s)
COVID-19/epidemiology , Health Personnel/statistics & numerical data , Nursing Homes/statistics & numerical data , Aged , Humans , Incidence , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL